
Happening Documentation
Release 0.1.1

Happening

May 28, 2016

Contents

1 Introduction 3

2 Usage 5
2.1 Configuration . 5
2.2 Authentication . 5
2.3 Members . 6
2.4 Member Settings . 6
2.5 Notifications . 6
2.6 Events . 7
2.7 Tickets . 7
2.8 Pages . 8
2.9 Emails . 8
2.10 User Filtering . 9
2.11 Payment . 10
2.12 Plugins . 10

3 Development 13
3.1 Getting Started . 13
3.2 Standards . 13
3.3 Flash Messages . 14
3.4 Blocks . 14
3.5 Actions . 16
3.6 Notifications . 16
3.7 Following . 17
3.8 Filtering . 18
3.9 Data Tables . 19
3.10 Creating Plugins . 20
3.11 Configuration Variables . 21
3.12 Configuration . 24
3.13 Event Configuration . 25
3.14 Payment . 25
3.15 Plugins . 26

4 Indices and tables 27

i

ii

Happening Documentation, Release 0.1.1

Contents:

Contents 1

Happening Documentation, Release 0.1.1

2 Contents

CHAPTER 1

Introduction

Happening is an open source event/community management tool.

Think Eventbrite meets Meetup, running on your own domain with your own branding.

The project is still in heavy development and still has traces of its past as the website of the Southampton Code Dojo.
It is not currently recommended for production use.

This documentation is also very incomplete, it will become more complete as the project progresses.

3

https://www.southamptoncodedojo.com/

Happening Documentation, Release 0.1.1

4 Chapter 1. Introduction

CHAPTER 2

Usage

If you’d like to use Happening to host your own event or community, read these topics for instructions and advice.

2.1 Configuration

Once any wanted Plugins have been enabled. The Configuration page of the Admin panel allows you to configure
general site-wide settings. The default variables which are available for configuration are:

Other configuration options will be added by enabled Plugins.

2.2 Authentication

Using the Authentication page of the Admin panel, you can configure third party services to allow for use of
these services to log in to your community.

The available third party providers and configuration instructions are listed below.

GitHub

See ‘GitHub App Registration<https://github.com/settings/applications/new>‘_.

Twitter

See ‘Twitter App Registration<https://apps.twitter.com/app/new>‘_.

LinkedIn

See ‘LinkedIn App Registration<https://www.linkedin.com/secure/developer?newapp=>‘_.

Google

See ‘Google App Registration<https://console.developers.google.com/>‘_.

Facebook

See ‘Facebook Documentation<https://developers.facebook.com/docs/apps/register>‘_.

Stack Exchange

See ‘‘Stack Exchange App Registration<http://stackapps.com/apps/oauth/register>‘_.

5

http://stackapps.com/apps/oauth/register

Happening Documentation, Release 0.1.1

2.3 Members

Visitors will be required to register with the website (become a “member”) in order to participate in discussions,
receive notifications, and register for events. They can do this using an email address and password, or by using one
of the support social accounts.

Once they have registered, they will appear in the Members page of the Staff panel.

Member Profiles

Member profile will consist of their name, a biography, and any number of custom profile fields as configured in
Configuration.

From the Members page of the Staff panel, you may click on a member’s name to view their profile, or click on Edit
Profile alongside their name to edit their profile. You may also click on True/False below Staff to toggle their
staff status (click it when it is True will remove their staff status, clicking when it is False will make them staff).

2.4 Member Settings

When signed in, by clicking on their username in the top right corner, and then clicking on Settings, a member
may modify their settings.

Username

A member’s username defines how other users will see them on their profile, on event pages, and during discussions.

Email Addresses

A member may have multiple email addresses attached to an account. The primary email address will be the one
which recieves emails (for example notification emails) but all email addresses can be used to sign in to the account.

Social Accounts

A member may have multiple social accounts attached to an account. These accounts are used to sign in to the
community, and if configured in the member’s profile (see Members), will be linked to from their profile page.

Social Accounts can be added for any of the supported external sites. To configure the allowed external sites see
Configuration.

Password

Member’s may change their password by clicking Edit alongside Password.

Notifications

Member’s may click Notification Settings to modify their notification settings. For details see Notifications.

2.5 Notifications

Notifications are used to inform members when an action occurs which they may wish to be informed about. Some
notifications are built into the core of Happening and others are added by plugins.

Notifications can appear in a member’s notification feed, be sent to them by email, both, or neither. This is configurable
on a notification-by-notification and member-by-member basis.

Viewing Notifications

6 Chapter 2. Usage

Happening Documentation, Release 0.1.1

If there are unread notifications, a number will appear in the top bar indicating the number of unread notifications.
Clicking on this number will show the latest five notifications, with unread notifications highlighted. All notifications
will then be marked as read.

To see all notifications, member’s should click on See More at the bottom of this truncated notification feed.

Notification Settings

To access notification settings, members should click Notification Settings from the Member Settings page.
On this page, each notification is listed with a title and a description of what the notification does.

Most notifications allow you to configure whether it appears in your notification feed and whether it is sent by email.
This can be changed by ticking the appriate checkboxes and clicking Save.

Some notifications only allow you to configure either the notification feed setting or the email setting.

2.6 Events

Creating Events

To create an event, go to the Events page of the Staff panel and click New Event. Events must have a title, a date
and time, and an initial number of tickets. Other properties are optional. Once the event has been configured press
Save.

Presets

If you are regularly creating events with similar properties, it might be worth creating a preset which allows you to
load these properties in the future.

To create a preset, go to the Events page of the Staff panel and click on Presets. Then click New Preset. You
will be presented with the same form used for creating an Event, with an additional Preset Name field. Give the
preset a memorable name and enter the common properties. No properties are required when creating a preset. Once
you are ready, press Save to create the preset. To edit or delete the preset use the buttons alongside the preset name
on the Presets page.

After a preset has been created, when creating a new Event, a button Load Preset will appear at the top of the
page. Click this and choose a preset to load the settings into the form.

Editing Events

To edit an event, go to the Events page of the Staff panel and click on the event title. Then click on Edit at the top
of the page. Once you have changed the appropriate properties, click Save.

Viewing Events

The most recent five events (including future events) are listed under the Events menu in the top navigation bar.
Clicking on the event name will show the event page. Older events can be accessed by clicking on View All in this
menu, and the next event is always shown on the index page.

The view event page shows a list of members who are attending the event, allows members to purchase Tickets, and
provides space for Plugins to provide functionality.

2.7 Tickets

Purchasing Tickets

To purchase a ticket, go to the page of the Event (see Events), select the number of tickets to purchase and click
Purchase.

2.6. Events 7

Happening Documentation, Release 0.1.1

Viewing Purchased Tickets

To view a list of purchased tickets, sign in and then click on your username on the top menu, then click on My
Tickets.

Cancelling Tickets

To cancel a ticket, view the list of purchased tickets (as above) and click Cancel next to the ticket you wish to cancel.

Checking In Tickets

To indicate that a ticket has been used and the member did attend the event, Happening supports the concept of
“checking in” a ticket. To do this, visit the Event’s page on the staff panel (see Events), and click Manage Check
Ins.

This will present a list of purchased tickets with a search bar for filtering the tickets, and a Check In button for each
ticket.

2.8 Pages

Pages allow for the presentation of static content on your Happening website. This is particularly useful for About
pages, Contact pages, and so on.

Creating A Page

To create a page, click the Pages button in the Staff panel, and then click New Page.

The properties to be provided are:

• URL - Which is the unique relative URL of this page, the full URL will be http://yourwebsite.com/pages/URL
- so if URL was “about” the full URL would be http://youwebsite.com/pages/about

• Title - This is used in the title bar of the website

• Path - Explained below

• Content - Markdown representing the content of the page.

Paths

Paths define where the page appears on the navigation bar. Levels are separated by forward slashes, and each level is
a sub-menu. The final level of the path will be the link which leads to the page.

For example, the path About/Sponsorship will create an “About” menu at the first level, with a “Sponsorship” link
showing when the “About” menu is opened. Adding another page with a path of About/Contact/Leadership will create
a Contact sub-menu below the About menu, which contains within it a Leadership link.

Editing A Page

To edit a page, visit the Pages page of the Staff panel and click Edit alongside the page to be edited.

Deleting A Page

To delete a page, visit the Pages page of the Staff panel and click Delete alongside the page to be deleted.

2.9 Emails

Sending Emails

8 Chapter 2. Usage

http://yourwebsite.com/pages/URL
http://youwebsite.com/pages/about

Happening Documentation, Release 0.1.1

To send an email to all members, go to the Send Email page of the Staff panel. Emails have a query to specify who
should recieve the email (see User Filtering), and a start and end time. Any members who match the query between
the start and end time will recieve the email. Each member will only recieve each email a maximum of 1 time.

This is different to how most email systems work - where they are sent once when the email is written. In an event
management system this is most useful for emails with event information, where latecomers would otherwise not get
the email.

The to query is written using the Happening Query Language. More information is available at User Filtering.

Sending Emails Related to an Event

To send an email to all attendees of a given Event, visit the Event’s page on the Staff panel (see Events) and click
Send Email. This form is identical to the general Send Email form, but the content fields will have an
event variable in context, which can be used e.g. Our event {{event.title}} will be.....

Automatic Emails

Events can configure emails which will be sent automatically. These are configured when creating the Event (or
Preset) and will have their start sending/stop sending set relative to the event. This are typically used for reminder and
information emails.

In the to field, you may use {{event.id}} to represent the event ID and it will be automatically converted into
the actual event ID.

(e.g. to send an email to all attendees of the event who have not cancelled their tickets, the query should be
tickets__has:(event__id:{{event.id}} cancelled:False)). For more information about filter-
ing see User Filtering.

2.10 User Filtering

The Happening Filtering Language will be used throughout happening to allow staff members to target members.
Currently it is only used as a target for Emails, but in the future it will be used to specify ticket eligibility, voting
eligibility, group membership, etc.

The Happening Filter Language maps directly to Django queries. Differences are that keys and values are separated
by : instead of =, count being annotated automatically, and the addition of the has keyword. To access attributes
of related models you still use __.

Count

To filter users who have at least one ticket, use tickets__count__gt:0. There is currently no way of counting
the result of a previous query.

Has

Has is used to confirm that a relationship exists matching a subquery. For example
tickets__has:(event__id:1 cancelled:True) will find every User who has a cancelled ticket
for event 1.

Select All

To target every member of the system, a blank query will suffice.

Tickets to a particular event

As shown above, tickets__has:(event__id:1 cancelled:False) will find all members who have ac-
tive tickets to a Event 1.

A specific Member

Members can be targetted using simple key querying. E.g. id:1

2.10. User Filtering 9

Happening Documentation, Release 0.1.1

2.11 Payment

Some functionality in Happening will require/allow payment from members. Currently this is only the Membership
plugin but in future will include ticket purchases, etc.

To configure the payment settings go to Payment on the Admin Panel. Currently we only support Stripe payments
but will support other providers in future.

2.12 Plugins

Happening is built on a sophisticated plugin architecture which allows you to enable and disable features of the
software as needed. Happening ships with several useful plugins built in, and if functionality you need isn’t provided
it’s easy to add your own.

To enable and disable plugins, log in as an administrator and click Admin on the menu, followed by Plugins on the
sidebar. This will present you with a list of plugins which can be enabled and disabled by toggling the checkbox and
pressing save.

2.12.1 Groups

The groups plugin allows for events where attendees are separated into groups. These groups can be assigned by
organisers, self-assigned by attendees, or generated randomly. If the groups are generated randomly they can take
into account attributes of the attendees to balance groups (for example, to ensure that groups are mixed-skillset or
mixed-ability).

Group Permissions

When creating an event, you are asked to assign the permissions of attendees to create, move, and modify groups.

Creation refers to creating and joining a new group, moving involves joining or leaving existing groups, and modifying
groups allows attendees to edit the named and properties of the group they are in.

The options for permission levels are:

• Attendees cannot create/move/edit groups

• Attendees can create/move/edit groups after the event starts

• Attendees can create/move/edit groups at any time

• Attendees can create/move/edit groups after they are checked in

These rules do not apply to staff members who are always able to create, move, and edit groups.

Group Properties

When creating an event, you are able to specify a number of properties which attendees will be attached to groups.
These properties appear one the create group form and the edit group form and can be set by staff, or by attendees who
are members of the group.

The properties can be:

• Text, which is a single line text input

• Email, which is a valid email address

• Number, which is an integer

• URL, which is a valid URL

10 Chapter 2. Usage

Happening Documentation, Release 0.1.1

• Boolean, which is a checkbox indicating True or False

Creating Groups

Groups can be created by viewing the event and clicking Add a group. You will be asked for the Team name,
Description, and any custom group properties configured for the event. After clicking Save the group will be
created and you will join it by default.

Joining Groups

If you are not a member of a group, and have permission to move groups, visiting the event page will show join
group alongside each group. Clicking this will add you to the group.

Leaving Groups

If you are a member of a group, and have permission to move groups, visiting the event page will show leave
group alongside the group you are part of. Clicking this will remove you from the group.

Staff Moving Groups

Staff can move attendees around groups by visiting the event page in the Staff panel, and clicking the edit icon (a
pencil) alongside an attendee’s name.

Generating Groups

To generate a group, visit the event page in the Staff panel and click Generate Groups. You then decide if you
wish to clear existing groups, if only checked-in attendees should be grouped, and how many groups you want to
create. Attendees will be split evenly between the groups.

Viewing Groups

Clicking View Groups on the event page in the Staff panel will show all groups with avatars and names for mem-
bers. This can be used when showing attendees which groups they are in.

Event Configuration

2.12.2 Sponsorship

The sponsorship allows for displaying of organisations or individuals who support your event/community. It supports
two types of sponsor: event sponsors and tiered sponsors, you may use either or both in your commuity.

Creating/Modifying Sponsors

To create a sponsor, visit the Sponsors page of the Staff panel. You will be asked to provide:

• Sponsor’s name

• URL

• Description, which allows markdown formatting

• Logo

To edit an already created sponsor, visit the Sponsors page of the Staff panel and click on the sponsor’s name, then
click Edit Sponsor.

Event Sponsorship

Event sponsorship is where a sponsor contributes to the running of a single event, but may not be otherwise associated
with the wider community. The event sponsor is shown on the event page, the index page when the event is advertised,
and in all emails relating to the events they sponsor.

To add an event sponsor, visit the Events page of the Staff panel, then click on the name of the event you wish to add
a sponsor for. Then click Add Sponsor.

2.12. Plugins 11

Happening Documentation, Release 0.1.1

Tiered Sponsorship

Tiered sponsorship is used to associated a sponsor with an entire community rather than a single event. In it, sponsors
are assigned to “tiers” (typically Gold, Silver, Bronze) and then are shown in the footer of the website in order of tier.

To use tiered sponsorship, you must first set up tiers by going to the Sponsorship Tiers page on the Admin
panel and clicking New Sponsorship Tier.

Then, visit a sponsor’s page on the staff panel, and under Tiers click Add Tier. Select the tier their sponsorship
falls under and click Save.

2.12.3 Comments

The comments plugin adds a “discussion” section on all event pages. Signed in members are able to comment on the
event.

2.12.4 Membership

The membership plugin currently only allows for pay-what-you-want for one year membership.

This will add a “+” to the profile picture of any members, and a “Paid Member” tag on their profile.

This functionality will be expanded to allow for different membership options soon.

12 Chapter 2. Usage

CHAPTER 3

Development

To contribute to development of Happening, or to develop a plugin for use with Happening, read the following pages.

3.1 Getting Started

Requirements

The following must be available and configured:

• python

• virtualenv

Development Requirements

• jshint (Available via: npm install -g jshint)

Getting Started

Clone the repository to your disk, and then run setup - this will download all requirements and set up the database.

3.2 Standards

For Python, follow PEP8 and PEP257. With SCSS we follow a loose form of CSSGuidelin.es and OOCSS with BEM
naming convention. Existing styles can be viewed in styleguide.html.

Check that the code passes using check-standards.

check-standards also looks for common mistakes such as unused or double imports - these issues should be
fixed before they are committed. If any method has a higher cyclomatic complexity than 10 check-standards will flag
it and it should be changed (split up into multiple methods).

Requirements files should be separated into logical groups, with each individual requirement commented. All require-
ments should specify a version.

All functionality implemented should have tests, and all code should follow the coding conventions mentioned above.

Code coverage should not fall below 90%.

13

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
http://cssguidelin.es/

Happening Documentation, Release 0.1.1

3.3 Flash Messages

Flash messages are used to indicate the success/failure of an action (for example, posting a comment, purchasing a
ticket, etc.). To manage flash messages we use the django messages framework:

from django.contrib import messages
messages.debug(request, '%s SQL statements were executed.' % count)
messages.info(request, 'Three credits remain in your account.')
messages.success(request, 'Profile details updated.')
messages.warning(request, 'Your account expires in three days.')
messages.error(request, 'Document deleted.')

3.4 Blocks

Blocks provide spaces where plugins can add additional content to a page. Happening provides a number of blocks
which can be exploited by plugins and several plugins offer blocks of their own which can be exploited by other
plugins.

Creating A Block

To create a block, import the plugins library in a template and then use the plugin_block templatetag, providing
the name of the block and any parameters to be passed to the block.

For example:

{% load plugins %}
{% plugin_block "events.event_long" event %}

This creates a block named “events.event_long” which passes an event as a parameter.

Using A Block

To use a block, create a file named blocks.py inside any app/plugin. Inside this file, import the plugin_block
decorator from happening.plugins and use it as so:

from happening.plugins import plugin_block
from django.template.loader import render_to_string
from django.template import RequestContext

@plugin_block("events.event_long")
def event_long(request, event):

"""Add groups to long event information."""
return render_to_string("groups/blocks/events/event_long.html",

{"event": event},
context_instance=RequestContext(request))

This will add the rendered template to the events.event_long block. Using render_to_string to use templates is
a useful technique with blocks but is not required.

Built-in Blocks

events.event_long(request, event)
Shown on the events page.

Parameters

• request – Django request

14 Chapter 3. Development

https://docs.djangoproject.com/en/1.8/ref/contrib/messages/

Happening Documentation, Release 0.1.1

• event – Event

events.event_short(request, event)
Shown on the index page next to a future event.

Parameters

• request – Django request

• event – Event

staff.event.buttons(request, event)
Shown at the top of the staff event page, alongside “Send Email”, “Manage Check Ins”, etc.

Parameters

• request – Django request

• event – Event

staff.event.tickets.headers(request, event, ticket)
Shown in the <thead><tr> of the ticket list on the staff event page

Parameters

• request – Django request

• event – Event

• ticket – Ticket

staff.event.tickets.info(request, event, ticket)
Shown in the <tbody><tr> of the ticket list on the staff event page

Parameters

• request – Django request

• event – Event

• ticket – Ticket

staff.event.tickets.options(request, event, ticket)
Shown in a button group to the right of each ticket on the staff event page. To fit the style this should return a
 containing an <a> with a class of “button”

Parameters

• request – Django request

• event – Event

• ticket – Ticket

staff.event(request, event)
Shown at the bottom of the staff event page

Parameters

• request – Django request

• event – Event

happening.footer(request)
Shown at the footer of every page

Parameters request – Django request

3.4. Blocks 15

Happening Documentation, Release 0.1.1

3.5 Actions

Actions allow plugins to respond to actions occuring within Happening. They are similar to Django signals.

Triggering Actions

To trigger an action (creating a point for plugins to respond), import happening.plugins.trigger_action
and call it, passing the name of the action first, and keyword arguments which will be passed along to responders.

For example:

from happening.plugins import trigger_action
trigger_action("events.ticket_cancelled", ticket=self)

Responding To Actions

To respond to an action, create a file named actions.py in any app/plugin. In it, import the
happening.plugins.action decorator and apply it like so:

from happening.plugins import action

@action("events.ticket_cancelled")
def ticket_cancelled(ticket):

"""If a ticket is cancelled, ensure that it is not in any groups."""
for g in ticket.groups.all():

g.delete()

In this case, we will respond to the ticket cancelled action by deleting any groups attached to the ticket.

Built-in Actions

events.ticket_cancelled(ticket)
A ticket has been cancelled

Parameters ticket – Ticket

3.6 Notifications

Notifications are used for communicating events to users. To create a new notification type create a file named
notifications.py in any app, and add a new subclass of happening.notifications.Notification.
You must also create a template in templates/notifications/ which will provide the layout for the notifica-
tions pages. Check existing notifications for examples.

When the data passed to notifications is serialized a shallow copy will be made. This means that in your notification
templates, functions and properties will not be available, and references to other models will be flattened into an ID.
If, for example, you require the user and user.profile, BOTH of these must be required by your notification.

To send a notification create an instance of your class (ensuring you provide the required parameters and no unexpected
parameters) and then call .send():

n = CancelledTicketNotification(
self.user,
ticket=self,
event=self.event,
event_name=str(self.event))

n.send()

16 Chapter 3. Development

https://docs.djangoproject.com/en/1.8/topics/signals/

Happening Documentation, Release 0.1.1

3.7 Following

“Following” is used to allow users to optionally recieve updates about a particular thing. Currently this is only used
for Comments, but it is abstract and can be used with anything.

A “role” allows for different users to follow different aspects of the same object. For example, many users may want
to follow a discussion on an event, but relatively few users want to be alerted when new groups are created.

Automatically Following

To make a user follow a given object/role, use the follow method on the User instance:

user.follow(event, "discuss")

Manual Following

Automatic following will not force the user to follow an object/role pair if they have previously chosen to unfollow. If
you wish to force this follow (e.g. if the user has explicitly said they wish to follow it) then pass force=True:

user.follow(event, "discuss", force=True)

alternatively, a view has been set up which can be pushed to and will deal with these manual follows. To use this first
call follow_object_code on the User instance to generate a signed code (this ensures that users can only set up
follows which are authorised):

code = user.follow_object_code(event, "discuss")

Then allow the user to POST this code to the “follow” view (as the “object” parameter). You should also pass a “next”
GET parameter which tells the view where to redirect to, and the “message” parameter which will be sent as success
Flash Messages..:

<form action="{% url "follow" %}?next={{request.path}}" method="POST">
<input type="hidden" name="object" value="{{follow_code}}">
<input type="hidden" name="message" value="You are now following {{event.name}} discussion">
<button type="submit">Follow</button>

</form>

Unfollowing

To unfollow an object, use the unfollow method of the User instance:

user.unfollow(event, "discuss",)

alternatively, a view has been set up which can be pushed to and will deal with these unfollows. To use this first
call follow_object_code on the User instance to generate a signed code (this ensures that users can only set up
follows which are authorised):

code = user.follow_object_code(event, "discuss")

Then allow the user to POST this code to the “unfollow” view (as the “object” parameter). You should also pass a
“next” GET parameter which tells the view where to redirect to, and the “message” parameter which will be sent as
success Flash Messages..:

<form action="{% url "unfollow" %}?next={{request.path}}" method="POST">
<input type="hidden" name="object" value="{{follow_code}}">
<input type="hidden" name="message" value="You are no longer following {{event.name}} discussion">
<button type="submit">Unfollow</button>

</form>

Sending notifications

3.7. Following 17

Happening Documentation, Release 0.1.1

To send notifications to followers use the happening.notifications.notify_following method:

notify_following(
event, "discuss", CommentNotification,
{"comment": comment,
"author_photo_url": comment.author.profile.photo_url(),
"author_name": str(comment.author),
"object_name": str(event),
"object_url": request.POST['next']},
ignore=[request.user])

The ignore parameter indicates a list of users who should not recieve the notification, even if they are following. In
this example it includes the user who is making the comment.

3.8 Filtering

Filtering is used frequently in Happening to allow viewing subsets of large amounts of data. It involves the creation of
a filter-form and associating it with either a searchable-list or a Data Tables:

<form class="filter-form input-grid" data-filter="#members-table">
<div class="input-grid__container">

<label class="input-grid__container__item" for="search">Search</label>
<input class="filter-form__search-filter" name="search" type="search">

</div>
Status
<div class="input-grid__container">

<label class="input-grid__container__item radio"><input name="member-status" type="checkbox" class="checkbox filter-form__option-filter" value="non-member">Non-member</label>
<label class="input-grid__container__item radio"><input name="member-status" type="checkbox" class="checkbox filter-form__option-filter" value="member">Member</label>
<label class="input-grid__container__item radio"><input name="member-status" type="checkbox" class="checkbox filter-form__option-filter" value="staff">Staff</label>

</div>
</form>

In this example, the filter-form applies to a datatable identified by the id members-table. This could equally apply
to a searchable-list as the API is identical. It has a search box used to search every field (using the class
filter-form__search-filter), and some checkboxes for filtering based on the member-status attribute
(which would allow for filtering non-members, members, and staff members).

The available filter types are listed below.

search-filter

This allows for a text based search either on the whole table.

option-filter

This performs a search which checks that the specified column (as decided by the “name” field) matches one of the
selected values. If no values are selected, no filtering is performed. To match against multiple values, separate valid
values by a |. e.g:

<label class="input-grid__container__item radio"><input name="age" type="checkbox" class="checkbox filter-form__option-filter" value="20|21|22|23|24|25|26|27|28|29">20-29</label>

Searchable Lists

Searchable Lists are collections of items which can be search/filtered by a filter-form. As an example:

<div class="searchable-list" id="events-list">
{% for event in all_events %}

<div class="block block-list__item event-block searchable-list__item" data-searchable-title="{{event.title}}" data-searchable-description="{{event.description}}">
<!-- ... -->

18 Chapter 3. Development

Happening Documentation, Release 0.1.1

</div>
{% endfor %}

</div>

The container must have the class searchable-list and each item must have the class
searchable-list__item. In this case, we are adding a “title”, and “description” to the item, which can
be filtered as mentioned above. All data added using these data-searchable-* attributes will be searched using the
overal search functionality.

3.9 Data Tables

Data Tables are used through Happening to provide sorting, filtering, and searching on data. This uses the open source
DataTables jQuery plugin.

To apply it, add the “data-tables” class to a table. This will add pagination and sorting:

<table class="data-table" id="members-table">
<thead>

<tr>
<th>Username</th>

</tr>
</thead>
<tbody>

<tr><td>Member 2</td></tr>
<tr><td>Member 3</td></tr>

</tbody>
</table>

Filtering

The filter form should be built in the same way as detailed in Filtering. However, instead of providing data using
data- attributes, the queryable data will be provided in table columns:

<table class="data-table" id="members-table">
<thead>

<tr>
<th>Username</th>
<th data-name="age">20</th>

</tr>
</thead>
<tbody>

<tr>
<td>Member 2
<td>20</td>

</td>
</tr>
<!-- ... -->

</tbody>
</table>

In this case it would add a “name” attribute which can be filtered/searched. By adding the appropriate filter type this
column could be filtered:

<div class="input-grid__container">
<label class="input-grid__container__item radio"><input name="age" type="checkbox" class="checkbox filter-form__option-filter" value="20">20</label>
<label class="input-grid__container__item radio"><input name="age" type="checkbox" class="checkbox filter-form__option-filter" value="21">21</label>

3.9. Data Tables 19

Happening Documentation, Release 0.1.1

<label class="input-grid__container__item radio"><input name="age" type="checkbox" class="checkbox filter-form__option-filter" value="22">22</label>
</div>

If you’d rather this field still be searchable but not be visible, you can add data-visible="0" to the column, e.g:

<table class="data-table" id="members-table">
<thead>

<tr>
<th>Username</th>
<th data-name="age" data-visible="0">20</th>

</tr>
</thead>
<tbody>

<tr>
<td>Member 2
<td>20</td>

</td>
</tr>
<!-- ... -->

</tbody>
</table>

3.10 Creating Plugins

To create a plugin, create a directory in the plugins directory and inside it create a __init__.py file. Inside this
file create a class Plugin:

class Plugin(object):

"""Plugin which adds comments."""

name = "Comments"

At a minimum, you must give a name attribute which will show in the “Plugins” page of the Admin panel. If you
provide a docstring that will also be shown.

URLS

If you want to have views, add a url_root attribute to your Plugin class:

url_root = "comments/"

In this case, it will prefix all URLs for this plugin with “comments/”. Then create a urls.py as you would normally in
a django project:

from django.conf.urls import patterns, include

urlpatterns = patterns('plugins.comments.views',
(r'^comments/posted/$', 'comment_posted'),
(r'^comments/', include('django_comments.urls')),
)

Staff

If you want to add views accessible only to staff, add a staff_url_root attribute to the Plugin class:

staff_url_root = "groups/"

20 Chapter 3. Development

Happening Documentation, Release 0.1.1

and then create a staff.py which contains the django urls:

from django.conf.urls import patterns, url

urlpatterns = patterns('plugins.groups.views',
url(r'^groups$',

'groups',
name='groups'),

)

These urls will only be accessible by staff members. If you want to add a link to the Staff panel navigation, inside
staff.py add a staff_links variable:

staff_links = (
("Groups", "groups"),

)

The first part of the tuple is the text, the second part is the url name to link to.

Admin

If you want to add views accessible only to admins, add an admin_url_root attribute to the Plugin class:

admin_url_root = "groups/"

and then create a admin.py which contains the django urls:

from django.conf.urls import patterns, url

urlpatterns = patterns('plugins.groups.views',
url(r'^group_admin$',

'group_admin',
name='group_admin'),

)

These urls will only be accessible by admins. If you want to add a link to the Admin panel navigation, inside
admin.py add an admin_links variable:

admin_links = (
("Groups", "group_admin"),

)

The first part of the tuple is the text, the second part is the url name to link to.

3.11 Configuration Variables

Configuration Variables are used to allow plugins to add properties to existing models. In the core of Happening they
are used to add general Configuration, and Event Configuration. Plugins can add their own configuration variables.

Adding Configuration Variables

To add a configuration variable, you must create a file in your app/plugin which is specified by the model you’re
attempting to add a property to. In the case of Configuration the filename is configuration.py, in the case of
Event Configuration it is event_configuration.py, for Plugins see the appropriate documentation.

Inside this file, create classes which subclass happening.configuration.ConfigurationVariable.
There are a number of existing subclasses to provide useful data types, which are listed below.

Accessing Configuration Variables

3.11. Configuration Variables 21

Happening Documentation, Release 0.1.1

In Python code, to access a configuration variable, simply instantiate the variable’s class, passing the object the variable
should be bound to, and then call .get():

from plugins.groups.event_configuration import GroupCreation
event = # ...
group_creation_config = GroupCreation(event).get()

In a template, use the get_configuration filter in the plugins library to read configuration variables:

{% load plugins %}
{{"pages.configuration.NameOfEvents"|get_configuration}}
{{"groups.configuration.GroupCreation"|get_configuration:event}}

Allowing Other Plugins to Add Configuration Variables

If you wish to use configuration variables on your models, you will use the get_configuration_variables,
attach_to_form, and save_variables methods.

An example usage is shown below:

def edit_group(request, pk, group_number):
"""Edit a group."""
event = # ...
group = # ...
variables = get_configuration_variables("group_form", group, event=event)
form = GroupForm(instance=group)
attach_to_form(form, variables)
if request.method == "POST":

form = GroupForm(request.POST, instance=group)
attach_to_form(form, variables)
if form.is_valid():

form.save()
save_variables(form, variables)
return redirect("view_event", event.pk)

return render(request, "groups/edit_group.html", {"form": form})

In this case, we are editing a group - and allowing Configuration Variables to be added to the group. We first get
the variables using get_configuration_variables, passing the filename which will contain the variables
(“group_form.py”), the object that the variables will attach to (group) and some extra context which can optionally be
used by the Configuration Variables (the event the group is for). After creating the form (or re-creating the form to add
POST data) we must use attach_to_form to add the appropriate fields to the form. Once the form is validated we
use save_variables to commit the variables to the database.

The process is very similar when we’re creating a new object instead of modifying an existing one:

def add_group(request, pk):
"""Add a group."""
event = # ..
form = GroupForm()
variables = get_configuration_variables("group_form", event=event)
attach_to_form(form, variables)

if request.method == "POST":
form = GroupForm(request.POST)
attach_to_form(form, variables)
if form.is_valid():

group = form.save()
variables = get_configuration_variables("group_form", group, event=event)
save_variables(form, variables)

22 Chapter 3. Development

Happening Documentation, Release 0.1.1

return redirect("view_event", event.pk)
return render(request, "groups/add_group.html", {"form": form, "event": event})

In here, we initially get the variables without specifying which group they will be attached to, then after we have
validated the form and created the group, we get new variables which are bound to the group object, before saving
them using save_variables.

Configuration Variable Types

Custom Properties

Custom Properties are a set of two Configuration Variable types CustomProperties and PropertiesField
which work together to allow users to configure their own properties attached to models.

To demonstrate how these work, we’ll take the example of adding custom properties to groups on an event-by-event
basis. First, we add a CustomProperties to event_configuration.py:

from happening import configuration
class GroupProperties(configuration.PropertiesField):

"""What properties should be provided for groups."""

Then, we add these properties (via a PropertiesField) to the groups. To do this, we create a group_form.py:

from happening import configuration

class CustomProperties(configuration.CustomProperties):

"""The custom properties added on event creation."""

configuration_variable = "plugins.groups.event_configuration.GroupProperties"
configuration_variable_instance = "event"

Here, the properties come from the configuration variable “plugins.groups.event_configuration.GroupProperties”, and
are bound to the “event” object (which will be passed in when calling get_configuration_variables).

This is all that is needed to allow users to add their own properties to models.

Custom Variable Types

Creating a custom variable type typically requires the creation of three classes. To demonstrate we’ll create a “Mark-
downField”, which is simply a TextArea with a particular class added (that Javascript can hook onto).

First, we must create a subclass of django.forms.Widget, and implement the render method:

class MarkdownWidget(forms.Textarea):

"""A widget for editing markdown."""

def render(self, name, value, attrs):
"""Render the widget."""
attrs['class'] = 'markdown-widget ' + attrs.get('class', '')
return super(MarkdownWidget, self).render(name, value, attrs)

In this case we have overridded forms.Textarea which is a subclass of forms.Widget and takes care of rendering a
TextArea. We could have used render_to_string here to render completely custom html.

We then create a subclass of django.forms.Field, which references the widget to be rendered.
It’s often best here to subclass an existing Field subclass (see ‘‘Django Form Fields Documentation
<https://docs.djangoproject.com/en/1.8/ref/forms/fields/>‘‘_, of which there are many:

3.11. Configuration Variables 23

https://docs.djangoproject.com/en/1.8/ref/forms/fields/

Happening Documentation, Release 0.1.1

class MarkdownField(forms.CharField):

"""A field for editing markdown."""

widget = MarkdownWidget

In this case we subclass CharField as the widget will return a text value.

Finally, you need to create a subclass of happening.configuration.ConfigurationVariable. At a
minimum this should point to the Field just created:

class MarkdownField(ConfigurationVariable):

field = forms.MarkdownField

This could also be achieved without the ConfigurationVariable subclass. However, in this case you would be
required to reference the Field subclass each time you create a new configuration variable of this type. For example:

class Description(configuration.CharField):

"""Event Description."""

field = forms.MarkdownField

In this case, we simply override the field for the Description variable.

Custom “Custom Properties” Types

Currently Custom Properties can only have variables of type CharField, EmailField, IntegerField, URLField, and
BooleanField. We hope to allow for custom types in future.

3.12 Configuration

Configuration is used to allow site-by-site Configuration Variables. To create a configuration vari-
able create a file named configuration.py in any app. In this file, add a subclass of
happening.configuration.ConfigurationVariable representing the variable you are adding.

For example:

class NameOfEvents(configuration.CharField):

"""The term used to refer to an event, e.g. "match", "rally"."""

default = "event"

This creates a “name of events” variable which is a string (CharField), and defaults to “event”

You can set this variable to be required, by setting required = True.

To access the content of the variable, create an instance of the class and call .get():

event_name = NameOfEvents().get()

In a template, use the get_configuration filter in the plugins library to read configuration variables:

{% load plugins %}
{{"pages.configuration.NameOfEvents"|get_configuration}}

24 Chapter 3. Development

Happening Documentation, Release 0.1.1

3.13 Event Configuration

Event Configuration is used to allow event-by-event Configuration Variables. To create a configuration
variable create a file named event_configuration.py in any app. In this file, add a subclass of
happening.configuration.ConfigurationVariable representing the variable you are adding.

For example:

class GroupCreation(configuration.ChoiceField):

"""Who is able to create groups."""

default = 0

choices = [
(0, "Members cannot create groups"),
(1, "Members can create groups after the event starts"),
(2, "Members can create groups at any time"),

]

This creates a “group creation” variable which is one of three options, and defaults to 0

To access the content of the variable, create an instance of the class and call .get():

can_create_groups = GroupCreation(event).get()

In a template, use the get_configuration filter in the plugins library to read configuration variables:

{% load plugins %}
{{"groups.configuration.GroupCreation"|get_configuration:event}}

3.14 Payment

Some functionality in Happening will require/allow payment from members. Currently this is only the Membership
plugin but in future will include ticket purchases, etc.

The payment details is abstracted away so that Happening functionality which requires payment can make a request
and be informed that payment has been received. There is no need for more involved interaction with payments.

To take a payment, first create a Payment object, and redirect to make_payment:

from payments.models import Payment

payment = Payment(
user=request.user,
description="Membership",
amount=1000,
extra={"member": member.pk},
success_url_name="membership_payment_success",
failure_url_name="membership_payment_failure"

)
payment.save()
return redirect("make_payment", payment.pk)

The description will be shown on the member’s bank statement. The amount is in pennies. Extra can take any infor-
mation you want to refer back to later. It will be shown in the payment log and will be available in your success/failure
callbacks.

3.13. Event Configuration 25

Happening Documentation, Release 0.1.1

The success_url_name and failure_url_name configure the view which will be redirected to once payment is complete.
These should be decorated with the payment_successful and payment_failed decorators.

An example of callbacks are:

@login_required
@payment_successful
def membership_payment_success(request, payment):

"""Membership payment successful."""
member = get_object_or_404(get_user_model(), pk=payment.extra["member"])

Do something with the member since they've paid

messages.success(request, "Your payment has been made " +
"successfully. Thank you very much!")

n = MembershipPaymentSuccessfulNotification(
request.user, amount=payment.amount / 100)

n.send()

return redirect("membership", member.pk)

@login_required
@payment_failed
def membership_payment_failure(request, payment):

"""Membership payment failed."""
messages.error(request, payment.error)
return redirect("membership", payment.extra["member"])

3.15 Plugins

3.15.1 Groups

Group Properties

To add properties to groups, create a file named group_form.py in any app/plugin, and inside it put any needed
:ref:configuration_variables. These will be shown on the create/edit group pages and on the view group
page.

3.15.2 Sponsorship

Sponsorship currently provides no blocks, actions, or other integration with other plugins.

3.15.3 Comments

To include comments on a page add:

{% comments object %}

where object is the object you wish to attach the discussion to. When posting a comment users will automatically
follow the “discuss” role of object. To allow people to optionally follow/unfollow a discussion, see Following.

26 Chapter 3. Development

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

27

Happening Documentation, Release 0.1.1

28 Chapter 4. Indices and tables

Index

E
events.event_long() (built-in function), 14
events.event_short() (built-in function), 15
events.ticket_cancelled() (built-in function), 16

H
happening.footer() (built-in function), 15

S
staff.event() (built-in function), 15
staff.event.buttons() (built-in function), 15
staff.event.tickets.headers() (built-in function), 15
staff.event.tickets.info() (built-in function), 15
staff.event.tickets.options() (built-in function), 15

29

	Introduction
	Usage
	Configuration
	Authentication
	Members
	Member Settings
	Notifications
	Events
	Tickets
	Pages
	Emails
	User Filtering
	Payment
	Plugins

	Development
	Getting Started
	Standards
	Flash Messages
	Blocks
	Actions
	Notifications
	Following
	Filtering
	Data Tables
	Creating Plugins
	Configuration Variables
	Configuration
	Event Configuration
	Payment
	Plugins

	Indices and tables

